Realizado por: Javier Godino Sánchez e Inma Requena Pérez

external image 400px-Placas_tectonicas_mapa.png




TECTÓNICA DE PLACAS

Introdución


La tectónica de placas es una teoría geológica que explica la forma en que está estructurada la litosfera (la porción externa más fría y rígida de la Tierra). La teoría da una explicación a las placas tectónicas que forman la superficie de la Tierra y a los desplazamientos que se observan entre ellas en su deslizamiento sobre el manto terrestre fluido, sus direcciones e interacciones. También explica la formación de las cadenas montañosas (orogénesis). Así mismo, da una explicación satisfactoria de por qué los terremotos y los volcanes se concentran en regiones concretas del planeta (como el cinturón de fuego del Pacífico) o de por qué las grandes fosas submarinas están junto a islas y continentes y no en el centro del océano.

Las placas tectónicas se desplazan unas respecto a otras con velocidades de 2,5 cm/año lo que es, aproximadamente, la velocidad con que crecen las uñas de las manos. Dado que se desplazan sobre la superficie finita de la Tierra, las placas interaccionan unas con otras a lo largo de sus fronteras o límites provocando intensas deformaciones en la corteza y litósfera de la Tierra, lo que ha dado lugar a la formación de grandes cadenas montañosas (verbigracia los Andes y Alpes) y grandes sistemas de fallas asociadas con éstas (por ejemplo, el sistema de fallas de San Andrés). El contacto por fricción entre los bordes de las placas es responsable de la mayor parte de los terremotos. Otros fenómenos asociados son la creación de volcanes (especialmente notorios en el cinturón de fuego del océano Pacífico) y las fosas oceánicas.



Origen de la tectónica de placas

Se piensa que el origen de las placas se debe a corrientes de convección en el interior del manto, las cuales fragmentan a la litósfera. Las corrientes de convección son patrones circulatorios que se presentan en fluidos que se calientan en su base. Al calentarse la parte inferior del fluido se dilata. Este cambio de densidad produce una fuerza de flotación que hace que el fluido caliente ascienda. Al alcanzar la superficie se enfría, desciende y se vuelve a calentar, estableciéndose un movimiento circular auto-organizado. En el caso de la Tierra se sabe, a partir de estudios de reajuste glaciar, que la astenósfera se comporta como un fluido en escalas de tiempo de miles de años y se considera que la fuente de calor es el núcleo terrestre. Se estima que éste tiene una temperatura de 4500°C. De esta manera, las corrientes de convección en el interior del planeta contribuyen a liberar el calor original almacenado en su interior, que fue adquirido durante la formación de la Tierra.
Así, en zonas donde dos placas se mueven en direcciones opuestas (como es el caso de la placa Africana y de Norte América, que se separan a lo largo de la cordillera del Atlántico) las corrientes de convección forman nuevo piso oceánico, caliente y flotante, formando las cordilleras meso-oceánicas o centros de dispersión. Conforme se alejan de los centros de dispersión las placas se enfrían, tornándose más densas y hundiéndose en el manto a lo largo de zonas de subducción, donde el material litosférico es fundido y reciclado.
Una analogía frecuentemente empleada para describir el movimiento de las placas es que éstas "flotan" sobre la astenósfera como el hielo sobre el agua. Sin embargo, esta analogía es parcialmente válida ya que las placas tienden a hundirse en el manto como se describió anteriormente.


Placas, placas límites, y el origen de los movimientos


En 1962, la idea que las piezas de la superficie de la tierra se movían no era considerada radical. Como vimos en la lección Placas Tectónicas I, el concepto del movimiento continental y de la extensión del suelo marítimo había revolucionado la geología, y los investigadores empezaron a revisar sus interpretaciones de los datos existentes. Por ejemplo, los geólogos sabían que los terromotos no estaban distribuidos al azar en la tierra.

En realidad, los terremotos, se concentran en las placas límites dibujadas por Harry Hess. Sin embargo, no todos los terremotos ocurren a la misma profundidad. Donde Hess había postulado que las rocas del suelo oceánico estaban hundiéndose en las zonas de subducción o sumersión, ocurren los terremotos a una baja profundidad de 0-33 km debajo de la superficie cerca de las zanjas, y a una profundidad de casi 700 km debajo de la superficie, más tierra adentro. Por otra parte, sólo terremotos poco profundos (de profundidad de 0-33 km) son registrados en las cordilleras que se extienden. Estos datos ayudaron a los geólogos a diseñar planos longitudinales que muestran que las placas son delgadas en las cordilleras que se extienden, y que la subducción alcanza largas distancias, llevando las placas a profundidad debajo de los continentes.

Al igual que los terremotos, los volcanes estaban preferentemente localizados en las placas límites o cerca de ellas.


Al igual que los terremotos, diferentes tipos de volcanes existen en diferentes tipos de placas límites. La mayoría de las erupciones volcánicas que salen en las noticias, como la erupción del Monte Santa Helena de 1980, tienen lugar cerca de las zonas de subducción. Estas devastadoras y explosivas erupciones reflejan la composición de magma, que es extremadamente viscosa y que por consiguiente no fluye fácilmente. Al contrario, las erupciones volcánicas que existen en las cordilleras que se extienden son mucho mas suaves, en parte porque la mayoría de estas erupciones están debajo de 2-3 kilómetros de agua, pero también porque el magma es menos viscoso.

Placas límites

Estas observaciones sobre la distribución de los terremotos y los volcanes ayudó a los geólogos a definir los procesos que ocurren en las cordilleras que se extienden y las zonas de subducción. Además, ayudaron a los científicos a descubrir que hay otros tipos de placas límites. En general, las placas límites son el escenario de gran actividad geológica, terremotos, volcanes, y topografía dramática, de tal manera que cordilleras como los Himalayas están todas concetradas donde dos o más placas se encuentran en un límite. Hay tres principales maneras en que las placas interactúan en los límites: pueden moverse en dirección divergente, pueden moverse en dirección convergente, o pueden deslizarse una al lado de la otra, transformante. Cada una de estas interacciones produce un modelo de terremoto, volcanismo y topografía diferentes:

Límites Divergentes
Los límites divergentes son las cordilleras oceánica centrales que lanzaron la revolución de las placas tectónicas. La Cordillera Central Atlántica es un ejemplo clásico. Los terremotos poco profundos y fluidos menores de lava caracterizan la cordillera oceánica central. El suelo marítimo en las cordilleras es más alto que los llanos abismales alrededor, porque las rocas son más calientes (y menos densas). Se enfrian y condensan mientras se alejan del centro de extensión. La extensión ha estado ocurriendo en la Cordillera Central Atlántica durante 180 millones de años, lo que ha producido un gran valle oceánico, el Óceano Atlántico.

Límites Convergentes
Los límites convergentes son los más activos geológicamente, con diferentes características dependiendo del tipo de costra presente. Hay dos tipos de costras: oceánica y continental. La costra continental es gruesa y ligera, la costra oceánica es delgada, densa y forma las cordilleras oceánicas centrales. La actividad que tiene lugar en los límites convergentes depende del tipo de costra presente, tal como se explica aquí.
Costra oceánica encuentra costra continental:
estas son las zonas de subducción imaginadas por Hess, donde la costra oceánica densa se sumerge debajo de la costra continental ligera. Estos límites se caracterizan por: a) una zanja oceánica muy profunda al lado de una cordillera continental montañosa alta, b) numerosos terremotos que progresan de lo poco profundo a lo profundo, y c) un gran número de volcanes de composición intermedia. Los Andes deben su existencia a la zona de subducción en el borde occidental de la placa de América del Sur. En realidad, este tipo de límite es usualmente llamado el margen Andino.

Costra oceánica encuentra costra oceánica:
donde dos placas oceánicas convergen, también ocurre una zona de subduccion, pero el resultado es ligeramente diferente que en el Margen Andino. Puesto que las densidades de las dos placas son similares, es usualmente la costra oceánica más antigua la que se hunde porque es más fría y ligeramente más densa. Los terremotos progresan de lo menos profundo a lo más profundo como en la convergencia oceánica-continental, y los volcanes forman un arco de islas, como el Monte Fuji en Japón y Pinatubo en Filipinas. Estos volcanes son ligeramente diferentes de esos que forman los Andes porque el magma se produce de la costra oceánica derretida en vez de la costra continental derretida .

Costra continental encuentra costra continental:
cuando dos piezas de costra continental convergen, el resultado es un gran montón de material continental. Ambas piezas de costra son ligeras y no son fácilmente hundidas. La convergencia continental está ejemplificada en la cordillera de los Himalayas, donde la placa India se encuentra con la placa Asiática. Ocurren varios terremotos pocos profundos, pero hay muy poco volcanismo.


Límites transformantes
La mayoría de los límites son convergentes o divergentes, los límites transformantes son los más raros. La falla de San Andrés en California es un ejemplo de un límite continental transformante. Terremotos frecuentes y poco profundos ocurren (como los famosos terremotos de San Francisco en 1906 y 1989), pero hay poco volcanismo asociado o relieve topográfico. La Falla Alpina de Nueva Zelanda es muy similar. La mayoría de los límites transformantes ocurren no en el interior sino en los segmentos cortos, al borde de las cordilleras oceánicas centrales.
Unos pocos límites retan clasificaciones simples y son llamados como 'placas de las zonas límite'. Por ejemplo, un modelo de terremoto complicado se produce por una ancha y poco entendida zona de placa límite entre las placas Euroasiática y Aficanas en el Mediterráneo.

Actividad Geológica separada de las placas límite

Los límites descritos anteriormente dan cuenta de la mayoría de la actividad sísmica y volcánica en la tierra. Sin embargo, mientras más datos empezaban a explicar el esquema de las placas tectónicas, más sobresalían las excepciones. ¿Qué puede explicar Hawai, por ejemplo, un antiguo escenario de actividad volcánica en la placa del Pacífico central donde no hay subducción o extensión para generar magma?
Tenía que haber algo más. En 1963, J. Tuzo Wilson, un geofísico canadiense, propuso la teoría que la capa contenía inmóviles lugares calientes, delgadas plumas de magma caliente que actuaban como quemadores Bunsen cuando las placas estaban encima de ellos. Las Islas Hawaianas forman una larga y derecha cadena, con erupciones volcánicas continuas en la isla Hawai e islas volcánicas altamente erosionadas en el noreste. De acuerdo a la teoría de lugares calientes de Wilson, la cadena de islas representa el movimiento hacia el surestede de la placa Pacífico sobre la capa de pluma.



Una importante implicación de la teoría de Wilson es que, puesto que los lugares calientes son estacionarios, las pistas de los lugares calientes podían ser usadas para rastrear la historia del movimientos de las placas. Por ejemplo, la pista de la cadena Hawaina continua hacia el noroeste como una cadena de antiguos volcanes inactivos bajo agua. Una vez que las erupciones volcánicas se detienen, las olas oceánicas empiezan a erosionar las islas debajo del nivel del mar y se llaman montes marítimos. Las islas y los montes marítimos asociados con los lugares calientes Hawainos ofrecen una historia sobre el movimiento de la placa Pacífico, que aparentemente tomó un rumbo al este alrededor de 28 millones de años. Otras pistas de lugares calientes en el mundo pueden ser usadas de manera similar para reconstruir la historia global de las placas tectónicas.

¿Cúales son las fuerzas que motivan el movimiento?
Los lugares calientes añaden pruebas para confirmar que las placas se mueven constantemente. Irónicamente, sin embargo, la cuestión que provocó el ridículo de Wegener sigue provocando un acalorado debate: que provoca el movimiento de las placas? Eventualmente, una nueva Pangaea (o continente único) se puede formar, separar, y formar de nuevo en la Tierra. ¿Qué hace que estas placas se sigan moviendo?
Hess asumió que la capa de conducción era la fuerza motivadora principal. Material caliente, menos denso en las cordilleras oceánicas centrales, se enfría y se hunde en las zonas de subducción. Las placas 'montan' estas células de convección (ver la lección sobre Densidad para mayor información). Aunque había poca duda que la convección ocurre en la capa, el diseño actual sugiere que no es tan simple. Muchos geólogos sugieren que la fuerza de convección no es suficiente para empujar placas litoesféricas enormes como la placa de Norte América. Ellos sugieren que la gravedad es la principal fuerza motivadora: la fría y densa costra oceánica se hunde en la zona de subducción, empujando al resto de la placa con ella. De acuerdo a esta teoría, las intrusiones magmáticas en las cordilleras que se extienden son pasivas. El magma apenas llena un hueco creado por la separación de las dos placas.


Sin lugar a dudas, la gravedad y la convección ofrecen energía para mantener las placas en movimiento. Sus contribuciones relativas, sin embargo, son un asunto debatible y de investigación continua.
La fuerza de la placa tectónica yace en su habilidad para explicar todo sobre los procesos que vemos en los registros geológicos en la actualidad. Nuestro conocimiento de las sutilezas tiende a evolucionar, mientras sabemos más sobre nuestro planeta, pero las placas tectónicas son verdaderamente la base sobre la se asienta que la ciencia geológica.




Tipos de placas

  • Placas oceánicas. Son placas cubiertas íntegramente por corteza oceánica, delgada y de composición básica. Aparecerán sumergidas en toda su extensión, salvo por la presencia de edificios volcánicos intraplaca, de los que más altos aparecen emergidos, o por arcos de islas en alguno de sus bordes. Los ejemplos más notables se encuentran en el Pacífico: la placa Pacífica, la placa de Nazca, la placa de Cocos y la placa Filipina.
  • Placas mixtas. Son placas cubiertas en parte por corteza continental y en parte por corteza oceánica. La mayoría de las placas tienen este carácter. Para que una placa fuera íntegramente continental tendría que carecer de bordes de tipo divergente (dorsales) en su contorno. En teoría esto es posible en fases de convergencia y colisión de fragmentos continentales, y de hecho pueden interpretarse así algunas subplacas de las que forman los continentes. Valen como ejemplos de placas mixtas la placa Sudamericana o la placa Euroasiática.


Placas tectónicas del mundo


  • Principales placas:
Placa Sudamericana, Placa Norteamericana, Placa Euroasiática, Placa Indoaustraliana, Placa Africana, Placa Antártica, Placa Pacífica
  • Placas secundarias:
Placa de Cocos, Placa de Nazca Placa Filipina,, Placa Arábiga, Placa Escocesa, Placa Juan de Fuca, Placa del Caribe
  • Otras Placas:
Placa de la Riviera, Placa de Farallón, Placa de Okhotsk, Placa Amuria, Placa del Explorador, Placa de Gorda, Placa de Kula, Placa Somalí, Placa de Sunda
  • Microplacas
Placa de Birmania, Placa Yangtze, Placa de Timor, Placa Cabeza de Pájaro


Presentación